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Abstract
We propose a space-time interaction principle (StIP) which states any particle with mass m will

involve a random motion without friction, due to random impacts from space-time. Every impact

changes the amount ~ for an action of the particle. According to the principle, firstly, we prove the

interaction coefficient must be ℜ = ~
2mST

deriving from Langevin’s equation to the corresponding

Fokker-Planck Hamiltonian, where mST is a space-time sensible mass of the particle. We can

derive that an equation of motion for the particle will be the Schrödinger equation, and prove

that the space-time sensible mass mST reduce to the inertial mass in the non-relativistic quantum

mechanics. Secondly, we show that there must exist the smallest mass m̄ST as the minimum of

space-time sensible mass, provided the speed of light in vacuum as the maximum speed due to the

postulation of special relativity. Furthermore, we estimate a magnitude of this m̄ST from microwave

background radiation. Thirdly, an interpretation of Heisenberg’s uncertainty principle is suggested,

with a stochastic origin of Feynman’s path integral formalism. It is shown that we can construct a

physical picture distinct from Copenhagen interpretation, and reinvestigate the nature of space-time

and reveal the origin of quantum behaviours from the materialistic point of view.
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I. COMMENTS ON THE COPENHAGEN INTERPRETATION

The main idea of Copenhagen interpretation is that the wave function does not have

any real existence in addition to the abstract concept. Whether the wave function is an

independent entity, the Copenhagen interpretation does not make any statement. In this

article we do not deny the internal consistency of Copenhagen interpretation. We admit

that Copenhagen’s quantum mechanics is a self-consistent theory. Einstein believed that for

a complete physical theory, there must be such a requirement: a complete physical theory

should include all of the physical reality, not merely its probable behaviour. From the

materialistic point of view, the physical reality should be measured in principles , such as

the position q and momentum p of particles.

In the Copenhagen interpretation, the particle wave function Ψ(q, t) or the momentum

wave function Ψ(p, t) is taken to be the only description of the physical system, which can not

be seen as a complete physical theory[1] but only a phenomelogical effective theory. There-

fore, in this paper, we propose an StIP where the coordinate and momentum of particles

are objective reality not affected by the observations.With the postulation of StIP, quan-

tum behaviour will emerge from a statistical description of space-time random impacts on

the experimental scale, including Schrödinger equation, Born rule, Heisenberg’s uncertainty

principle and Feynman’s path integral formulation. Thus, we believe that non-relativistic

quantum mechanics can be constructed under the StIP. In this picture, the Born’s probabil-

ity description for quantum mechanics as well as Heisenberg’s uncertainty principle do not

have meanings of fundamental principles, rather that they can be derived from the StIP as

emergent phenomena.

II. THE ORIGIN OF THE STIP COEFFICIENT

Definition 1. The quanta of space-time (QST) is the smallest element unit of quantized

space-time.

Proposition 2. Massive particles in space-time will be random collided by quantas of space-

time (QSTs), the change of action during each collision is exact ~,the reduced Planck con-

stant. The motion of the particle under this action is a Markov process.

Let mST be the mass of the particle detected by space-time. We call mST the space-time
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sensible mass. We will prove the space-time interaction coefficient of a mass mST particle

will be universally given as

ℜ =
~

2mST

. (II.1)

Within the framework of random motion[2], or Wiener process in mathematics [3], this space-

time induced random motion is equivalent to the Markov process, moreover, the space-time

interaction coefficient is nothing but the diffusion coeffient [4]. In this section, we will start

our journey from propability theory of random motion[4, 5], and then give a concrete proof

that for the random motion induced by StIP(StIP), the space-time interaction coefficient is

given exactly by (II.1). After that, following the StIP and the hypothesis of light speed, we

derived that in space-time there should exists a universal minimal mass m̄ST , which is the

lower bound mass can be detected by the QST. We estimate the minimal mass according

to discussions of cosmological microwave background radiation[6]. The last two subsections

discussed two space-time model in order to investigate the origin of the space-time interaction

coefficient. From both we obtained the coefficient reads as ℜ = wℓ
2

, in which w is the average

speed of the particle and ℓ the mean free distance.

A. Probabilitistic proof of space-time interaction coefficient

We assume in a quantized space-time, full of QSTs, which are smallest elements of this

quantized space-time. A particle in space-time, naturally will suffer collisions from these

QSTs, and will emerge an arbitrary random motion. Each collision can be seen as a classical

elastic one, under conservation laws of energy and momentum, the particle will obtain or loss

certain amount of energy and momentum. If the particle is not scattered by QSTs, it will

keep in moving along a straight line with uniform velocity. When a collision happened, the

state of motion of the particle changed, however, the change is not instant, since an instant

collision means in physically the instant force is infinitely large. An explicit observation can

be achieved by introducting the impulse-momentum theorm:

F⃗∆t = mV⃗ −mV⃗0 = m∆V⃗ = ∆P⃗ . (II.2)
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1. The effect of separation of paths

At a certain moment, particle can be scattered by many QSTs with different momenta

and energies. In ∆t, we assume there are effectively N collisions. The state of the motion

will depends on the net effect of the N times collision. This is a principle of superposition.

We can use in total N vectors to superposite whole changes of the state of motion, which

means if at time t the particle was at position X⃗(t), velocity V⃗0, then at the moment t+∆t,

its position will be x⃗(t+∆t) = X⃗(t) +
∑N

i=1∆Xi, and velocityV⃗0 +
∑N

i=1∆V⃗i. This simple

analysis tells us in ∆t, the ultimate state of motion of the particle can be separated as N

different paths. This is the effect of separation of paths. While the weights of these paths,

aka the probability distribution of universal diffusion, highly relies on the energy distribution

of QSTs. That is saying, collisions by QSTs with different energies end up with different

changes of the state of motion.

2. Minimal energy

If the scattering QST has an extremely low energy such that in ∆t, the transfered action

is less then ~ , we conclude that in ∆t, the QSTs cannot collide the particle. Classically,

we argue that such a collision still in process, the particle as well as the QST are in a

bound state, not a scattering state. This is similar to completely inelastic collision in classic

mechanics, while in such a process, the conservation of energy and momentum can not be

satisfied simultaneously. Because of conservation of energy and momentum, the bound state

actually is not a stable state. The bounded particle is a virtual particle. This observation

leads to an important point: there exists a minimal energyEmin in ∆t so that

Emin∆t = const. (II.3)

In physics , the product of energy and time will have the unit of action. It is natural to

conjecture such a constant with action unit is the Planck constant, so we have

Emin∆t = ~. (II.4)
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3. Langevin Equation

We argue, the energy distribution of the QSTs in space-time, will be in type of Gaussian.

For one thing this is ensured by the central limit theorem in probability theory [5]. For

another, if the distribution is not Gassian, then the particle in space-time will have no

reason to act randomly. The Gaussion distribution reflects the QSTs are universal white

noises for particles in space-time. The space-time background can be seen as a enviroment of

white noise, while the particle is moving under the interaction of the enviroment, its motion

is described by a Markov process. The corresponding movement can be determined by the

Langevin equation[7]:
dqi(t)

dt
= −1

2
fi(q(t)) + νi(t) (II.5)

where qi(t) describes the trajectory of the particle, and fi(q) is a differentiable function,

which captures the classical motion of the particle. The νi is a white noise, here means

the interaction function induced by QSTs.For a Markov process, the average contribution of

white noise vanishes. However, because of its Gaussian nature, its variation is not zero, we

have

⟨νi⟩ν = 0, ⟨νi(t)νj(t′)⟩ν = Ωδi,jδ(t− t′) (II.6)

here theδi,j in the later equation can be obtained from the space-time homogeneous property,

while δ(t− t′) determined from the Markov property. For a Markov process, only conditions

at the moment determine the dynamics of the system, all information from future or past

are irrelevant. We can write down the basic correlation function by introducing a probability

measure [dρ(ν)],which is given as

[dρ(ν)] :=

(√
Ω

2π

)D

[dν] exp

(
− 1

2Ω

w
dt
∑
i

ν2i

)
(II.7)

It is easy to see that

w
νi(t)[dρ(ν)] = 0 = ⟨νi(t)⟩ν (II.8)w

νi(t)νj(t
′)[dρ[ν]] = Ωδi,jδ(t− t′) = ⟨νi(t)νj(t′)⟩ν (II.9)

here Ω describes the strength of space-time interaction on the particle. However, from

the definition of measure (II.7), we can see, νi have the unit of m/s, so Ω will have the unit

of m2/s. From previous analysis, each collision leads to a change of an action ~. ~ has the
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unit of angular momentum, kg ·m2/s. From this we can define a quantity with mass unit,

it is

mST ≡ ~
Ω
. (II.10)

The mass mST has the meaning such that it is the mass detected by QSTs, which is named

as space-time sensible mass in this article. Accordingly, the collision parameter Ω = ~
mST

.

From which we could read off the result of the random collison, in the sense of physical

realistic viewpoint. Because for an object in our real nature, the larger its mass means the

smaller its quantum effect.

Langevin equation generates a probability such that

P[q, t; q0, t0] = ⟨
D∏
i=1

δ[qi(t)− qi]⟩ν , t ≥ t0 (II.11)

which means for an operator O[q], its averate value at time t will be:

⟨O[q(t)]⟩ν ≡
w
P[q, t; q0, t0]O[q]dq (II.12)

Using the probability distribution (II.11), one can immediately verify equation (II.12).

Actually, the distribution (II.11) can be seen as an evolution process, which says

P[q, t; q0, t0] = ⟨q|e−H(t−t0)|q0⟩

here the evolution Hamiltonian is the famous Fokk-Planck Hamiltonian, as we will derive

its formalism in next subsection.

4. Fokk-Planck equation

Given the Langevin equation (II.5), we can derive the corresponding Fokk-Planck equa-

tion, as well as the Fokk-Planck Hamiltonian [4].

We consider the time segment from t to t+ ϵ, ϵ→ 0, we have the Langevin equation as:

qi(t+ ϵ)− qi(t) = −1

2
ϵfi(q(t)) +

t+ϵw
t

νi(τ)dτ +O(ϵ3/2) (II.13)

its related propability distribution is

P[q, t+ ϵ; q′, t] = ⟨δ(q− q(t+ ϵ))⟩ν (II.14)
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To obtain the Fokk-Planck equation, we define following discreterization

√
ϵν̄i :=

t+ϵw
t

νi(τ)dτ

so that the discrete Langevin equation is

qi(t+ ϵ)− qi(t) = −1

2
ϵfi(q(t)) +

√
ϵν̄i +O(ϵ3/2) (II.15)

Notice here the time has been discreterized as

(t− t′)/ϵ ∈ Z+.

Now the Gaussian distribution and the property of Markov progcess determins the average

value of discrete white noises νi, we have

⟨ν̄i⟩ν = 0, ⟨ν̄i(t)ν̄j(t′)⟩ν =
~

mST

δi,jδt,t′ (II.16)

when ϵ→ 0, the Fourier expansion of the probability distribution (II.14) is

P̃[p, t+ ϵ; q′, t] =
w
e−ip·qP[q, t+ ϵ;q′, t]dDq (II.17)

= ⟨e−ip·q(t+ϵ)⟩ν

= ⟨e−ip·(q(t)+ϵ
dq(t)
dt

+O(ϵ2)⟩ν

= ⟨exp(−ip · (q′(t)− ϵ/2f(q′)))⟩ν

×

⟨
exp

[
−ip �

t+ϵw
t

ν(τ)dτ

]⟩
ν

×
⟨
exp

(
O(ϵ2)

)⟩
ν

= exp [−ip � (q′ − ϵf(q′)/2)]

×

⟨
exp

[
−ip �

t+ϵw
t

ν(τ)dτ

]⟩
ν
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Notice that the last average value can be evaluated out by Gaussian integration, which reads,(√
~
2π

)D w
[dν] exp

(
−mST

2~

w
dt

D∑
i

ν2i

)
exp

[
−ip �

t+ϵw
t

ν(τ)dτ

]
(II.18)

=

(√
~
2π

)D w
[dν] exp

(
−mST

2~

w
dt
∑
i

ν2i − ip �
t+ϵw
t

ν(τ)dτ

)

=

(√
~
2π

)D w
[dν] exp

(
−mST

2~

w
dt
∑
i

ν2i − i
√
ϵp � ν̄

)

× exp

(
+ϵ

~
2mST

p � p− ϵ
~

2mST

p � p
)

=

(√
~
2π

)D w
[dN

(
νi +

i~
2mST

√
ϵpi

)
]

× exp

(
−mST

2~

w
dt

D∑
i=1

(
νi +

√
ϵ
i~

2mST

pi

)2

− ϵ
~

2mST

p � p
)

= exp (−ϵ~p � p/2mST )

here we can obtain the Fourier expansion of the probability distribution,

P̃[p, t+ ϵ; q′, t] = e−ϵ~/2mSTp·p+iϵp�f(q′)/2−ip·q′
(II.19)

for ϵ→ 0, expanding (II.19) will end up with

P̃[p, t+ ϵ; q′, t] = e−ip·q′
(1− ϵHFP (p,q

′) +O(ϵ2)),

here we obtained the celebrate Fokk-Planck Hamiltonian

HFP (p,q) = − ~
2mST

p · p− ip · f(q) (II.20)

From which we can read off the diffusion coefficient induced by collisions between QSTs and

the particle, is exactly ℜ = ~/2mST . Later we will see in deriving the Schrodinger equation

of free particle in space-time, the space-time sensible mass mST will be identified with the

inertial mass, in the framework of non-relativistic quantum mechanics.

B. From discrete space-time to the space-time interaction coefficient

Beginning with StIP, we want to investigate the origin of space-time interaction co-

efficient. Within the framework of discrete space-time, space-time interaction coefficient
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ℜ = ~
2mST

should be derived in terms of parameters of discrete space-time. Let us con-

sider the simplest discrete model (see Fig.3.1), where the length union of discrete space is

ℓ. P (j, t) is the probability of a particle at lattice site j at time t. Because of the discrete

Figure II.1: Random jumping model on one dimensional lattice

j-1 j j+1

ξ ξ

nature of the space, all jumpings can only happen between nearest pair of positions. Given

the rate of jumping between the nearest neighbour ζ and the isotropy of frictionless space,

the evolution of probability should be

∂tP (j, t) = ζ(
1

2
P (j − 1, t) +

1

2
P (j + 1, t)− P (j, t)) (II.21)

the first two terms of RHS of (II.21) describe the fact that jumping toward and backward

from neighbors j − 1− th and j + 1− th positions respectively, have the same probability,

which is 1/2, the third term remarks the probability from j − th position to neighbors.

Introducing the fundamental spacing of the lattice ℓ, the eq.(II.21) goes to

∂tP (j, t) =
ζℓ2

2
(
P (j+1,t)−P (j,t)

ℓ
− P (j,t)−P (j−1,t)

ℓ

ℓ
) (II.22)

In the continuum limit of space-time, which says ℓ → 0, and ζ → ∞, but keeping the

quantity ζℓ2 unchanged, the probability P (j, t) now becomes the probability density ρ(x, t),

the RHS of (II.21) becomes the definition of second derivative. Thus we have

∂tρ(x, t) =
ζℓ2

2
∂2xρ(x, t). (II.23)

It is straightforward to generalise above equation onto three dimension case, we have,

∂tρ(r⃗, t) =
ζℓ2

2
∇2ρ(r⃗, t) (II.24)

Comparing with Einstein’s diffusion equation[10]

∂tρ(r⃗, t) = ℜ∇2ρ(r⃗, t) (II.25)

the microscopic origin of space-time coefficient will be

ℜ =
ζℓ2

2
(II.26)
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Furthermore, we can also discrete time with union τ = ℓ
w
, where w is the average velocity

of particle. With ζ = 1
τ
, we obtain

ℜ =
wℓ

2
(II.27)

Combining the microscopic structure of discrete space-time with the StIP, we have

ℜ =
wℓ

2
=

~
2mST

(II.28)

It’s crucial to notice that massive particle can not exist without space-time, which should be

considered as excitations of the structure of space-time. Different structures of space-time

(aka different spacing ℓ) lead to different masses of particles.

C. From space-time scattering to the space-time interaction coefficient

Particles will be scattered randomly from the QST with the speed of light, which leads

to the probability distribution of velocityf(v⃗). Therefore, all the particles cross the section

area dA during time dt will be inside the cylinder (see Fig.3.2). The volume of this cylinder

Figure II.2: Probability distribution of space-time scattering

dA

θ

v dt

is

V = vdt cos θdA (II.29)

in which the number of particles is

N = f(v⃗)d3v⃗vdt cos θdA (II.30)

Because of the isotropy of space, we have f(v⃗) = f(v). From left to right, the number of

particle cross the unit area per unit time is

Φ =
w

vz>0

N

dAdt
=

π
2w
0

dθ cos θ sin θ

2πw
0

dφ

+∞w
0

f(v)v3dv = π

+∞w
0

f(v)v3dv (II.31)
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where vz > 0 means 0 < θ < π
2
. The average velocity reads

w =

r +∞
0

f(v)vd3vr +∞
0

f(v)d3v
=

4π

ρ

+∞w
0

f(v)v3dv (II.32)

where the density of particle number is ρ =
r +∞
0

f(v)d3v. Correspondingly, the number of

particle cross the unit area per unit time will be

Φ =
1

4
ρw (II.33)

Let mean free path of particles be ℓ, i.e. the average distance traveled by the particle between

successive impacts from space-time. The net flux Jz through the z plane will be (see Fig.3.3)

Figure II.3: Mean free distance and scattering flux

z-l z+lz

ρ v
4
1（z-l） ρ v

4
1（z+l）

Jz =
1

4
ρ(z − ℓ)w − 1

4
ρ(z + ℓ)w = −1

2
ℓw∂zρ (II.34)

With the equation of continuity

∂tρ+∇ · J⃗ = 0 (II.35)

and the isotropy of space, we have

∂tρ =
1

2
ℓw∇2ρ (II.36)

Combining the kinetics of space-time scattering with the StIP, we obtain

ℜ =
wℓ

2
=

~
2mST

(II.37)

which is entirely consistent with Eq.II.28.
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III. RANDOM MOTION OF FREE PARTICLE UNDER SPACE-TIME INTER-

ACTION

A. From StIP to Schrödinger equation

Random motion of free particle under space-time interaction is a problem of stochastic

mechanics, of which the most dramatic difference from Newtonian Mechanics is that the

derivative dx⃗/dt is not well defined[8, 9]. For a stochastic process x⃗(t), its speed V⃗ can be

understood as the sum of classical speed v⃗ and fluctuated speed u⃗

V⃗ = v⃗ + u⃗ (III.1)

With the time reversal transformation x⃗→ x⃗, t→ −t, it’s shown that ṽ = −v⃗, ũ = u⃗. Since

a continues Markov process will still be a Markov process under time reversal, we can have

a well defined limit u⃗ = 0 as Newtonian Mechanics with

v⃗ =
1

2
(V⃗ − ˜⃗

V ) (III.2)

u⃗ =
1

2
(V⃗ +

˜⃗
V ) (III.3)

Without the interaction of space-time, the speed of particle v⃗ has to be the derivative

v⃗ = dx⃗
dt

. Contrasting from usual Markov process, space-time random motion is frictionless,

otherwise the quantum effect of a particle will decay as time going, which is obviously not

the case. According to the StIP, the coordinate of a free particle is a stochastic process

x⃗(t), in which the velocity V⃗ can not be expressed in terms of dx⃗
dt

. The velocity V⃗ should

be a statistical average corresponding to a distribution δx⃗ = x⃗(t+ 1
ω
)− x⃗(t), at the limit of

space-time collision frequency ω going to infinity. In Einstein’s theory on Brownian motion,

δx⃗ is a gaussian distribution with zero mean and variance proportional to 1
ω
[10]. However,

Einstein’s theory cannot be correct at the limit of space-time collision frequency ω going to

infinity[11, 12]. Therefore, we will construct the operator D as following, which plays the
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same role as d
dt

in Newtonian Mechanics. For any physical function f(x⃗, t), we have

ω(f(x⃗(t+
1

ω
), t+

1

ω
)− f(x⃗(t), t))

= [∂t +
∑
i

ω(xi(t+
1

ω
)− xi(t))∂i

+
∑
ij

ω

2
(xi(t+

1

ω
)− xi(t))(xj(t+

1

ω
)− xj(t))∂i∂j

+
∑
i

(xi(t+
1

ω
)− xi(t))∂i∂t +

1

2ω
∂2t ]f(x⃗(t), t) (III.4)

At the limit of space-time collision frequency ω going to infinity, in terms of statistical

average < ... > for δx, we can define the operator D as

Df(x(t), t) = lim
ω→+∞

ω < f(x⃗(t+
1

ω
), t+

1

ω
)− f(x⃗(t), t) > (III.5)

= (∂t +
∑
i

Vi∂i +
∑
ij

ℜij∂i∂j)f(x⃗(t), t)

where

V⃗ = lim
ω→+∞

ω < δx⃗ > (III.6)

ℜij = lim
ω→+∞

ω < δxiδxj >

2
(III.7)

According to the StIP, the matrix of interaction coefficient is

ℜij =
~

2mij

(III.8)

Because of the isotropy of space, the space-time interaction coefficient will be

ℜij = ℜδij (III.9)

which is consistent with Eq.II.28 and II.37. The operator D and its time reversal D̃ are

D = ∂t + V⃗ · ∇+ ℜ∇2 (III.10)

D̃ = −∂t +
˜⃗
V · ∇+ ℜ∇2 (III.11)

Therefore, the real speed of particle V⃗ can be written as

V⃗ = Dx⃗ (III.12)
˜⃗
V = D̃x⃗ (III.13)



A From StIP to Schrödinger equation 14

Correspondingly, its classical speed and fluctuated speed are

v⃗ = D−x⃗ (III.14)

u⃗ = D+x⃗ (III.15)

with

D− =
1

2
(D − D̃) (III.16)

D+ =
1

2
(D + D̃) (III.17)

We define the average acceleration of particles as

a⃗ = DV⃗ (III.18)

With the invariance of average acceleration under time reversal, the average acceleration of

a free particle must be zero, which can be written as

D−v⃗ +D+u⃗ = 0 (III.19)

D+v⃗ +D−u⃗ = 0 (III.20)

These conditions are equivalent to coupled non-linear partial differential equations as fol-

lowing

∂u⃗

∂t
= −ℜ∇2v⃗ −∇(u⃗ · v⃗) (III.21)

∂v⃗

∂t
= −(v⃗ · ∇)v⃗ + (u⃗ · ∇)u⃗+ ℜ∇2u⃗ (III.22)

Random motions of free particles due to the random impacts of QST satisfies the Markov

property if one can make predictions for the future of the process based solely on its present

state just as well as one could knowing the process’s full history. This is the simplest

situation for random motions, since the free particle does not involve any external potential.

Now, we have an initial value problem, which is to solve u⃗(x⃗, t) and v⃗(x⃗, t) given u⃗(x⃗, 0) =

u⃗0(x⃗), and v⃗(x⃗, 0) = v⃗0(x⃗). In order to solve the coupled non-linear partial differential

equations, we have to linearise it firstly. Let Ψ = eR+iI , where

∇R =
1

2ℜ
u⃗ (III.23)

∇I =
1

2ℜ
v⃗ (III.24)
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We can obtain
∂Ψ

∂t
= iℜ∇2Ψ (III.25)

According to the StIP, the universal space-time diffusion coefficient is the space-time inter-

action coefficient ℜ = ~
2mST

. Substituting to the last equation, we will get the equation of

motion of free particles as

i
∂Ψ

∂t
= − ~∇2

2mST

Ψ (III.26)

which is the Schrödinger equation essentially. From this emergent Schrödinger equation, we

can deduce a series of quantum behaviours. It’s important to remark that the space-time

sensible mass mST in the Schrödinger equation of free particles coincide with the inertial

mass m of free particles.Since we only discuss non-relativistic quantum mechanics in the

followings, we don’t need to distinguish mST from m any more. From |Ψ|2 = e2R and

∇R = 1
2ℜ u⃗, we have

u⃗ = ℜ∇|Ψ|2

|Ψ|2
(III.27)

which leads to Born rule ρ = |Ψ|2 . ρ(x, t) is the probabilistic density of particles in coordi-

nate x at time t. The Born rule is a law of quantum mechanics which gives the probability

that a measurement on a quantum system will yield a given result, which became a funda-

mental ingredient of Copenhagen interpretation. In this paper, we are attempt to suggest an

interpretation of Born rule according to the StIP, which can provide a materialistic point of

view for wave function. Emergent from random impacts of space-time, it’s absolutely neces-

sary that wave function is complex. If wave function were a real sine or cosine function[13],

according to ρ = |Ψ|2, the probabilistic density of a free particle with definite momentum

would oscillate periodically which violates the isotropy of physical space.

B. Physical meanings of potential functions R and I

Substituting Ψ = eR+iI into ∂Ψ
∂t

= iℜ∇2Ψ, we equalise the real and imaginary part

separately as

∂tR = −ℜ(2∇R · ∇I +∇2I) (III.28)

∂tI = ℜ[(∇R)2 − (∇I)2 +∇2R] (III.29)
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Combining with previous result ρ = |Ψ|2 = e2R, we have

∂tρ = 2ρ∂tR (III.30)

∇ρ = 2ρ∇R (III.31)

The differential equation of potential R can be turned into

∂tρ = −2ℜ∇ · (ρ∇I) (III.32)

With ∇I = 1
2ℜ v⃗, the differential equation of potential R is equivalent to the equation of

continuity

∂tρ+∇ · (ρv⃗) = 0 (III.33)

Noticing that the classical momentum of particle is mv⃗ = ~∇I, we find that the differential

equation of potential I goes to

∂t(~I) +
(∇(~I))2

2m
− ~ℜ[(∇R)2 +∇2R] = 0 (III.34)

Comparing with the Hamilton-Jacobi equation from classical mechanics [14, 15] as

∂tS +
(∇S)2

2m
+ V (x) = 0 (III.35)

which is particularly useful in identifying conserved quantities for mechanical systems. There

are two crucial remarks: Firstly, potential function I is proportional to the Hamilton-Jacobi

function S as S = ~I. Secondly, for a free particle, the inference of space-time can be

summed up to the space-time potential

VST = −~ℜ[(∇R)2 +∇2R] (III.36)

where the space-time potential VST will play the same role of potential V in the Hamilton-

Jacobi equation. The space-time potential VST vanishes in the classical limit ~ = 0, which

is equivalent to V = 0 for free particles in classical mechanics. The quantum effect, which

corresponding to nonzero ~, now is the nature result of the existence of the space-time

potential VST , induced by space-time interaction. In principal, the moving of free particle

can be described precisely by the space-time potential VST as

m
d2x⃗

dt2
= −∇VST = ~ℜ∇[(∇R)2 +∇2R] (III.37)
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C. Space-time random motion of charged particles in electromagnetic field

According to the StIP, electromagnetic field only serves as an external potential, which

itself is not affected by random impacts of space-time. In a electromagnetic field (E⃗, B⃗), the

charged particle will experience a Lorentz force F⃗ = e(E⃗ + v⃗ × B⃗). Therefore, the average

acceleration of charged particles will be

a⃗ = e(E⃗ + v⃗ × B⃗)/m (III.38)

where m is the inertial mass of charged particle and e is the charge. Based on the space-time

principle, we are able to derive the equation of motion of charged particle in electromagnetic

field, which is finally shown to be Schrödinger equation in electromegnatic field, which is

i~∂tΨ =
1

2m
(−i~∇− e

c
A⃗)2Ψ+ eϕΨ (III.39)

where the electromagnetic potential and the electromagnetic field are connected by

B⃗ = ∇× A⃗, E⃗ = −∂tA⃗−∇ϕ. (III.40)

We do not have average acceleration in the case absence of electromagnetic field, however,

this is not the case when the particle have non-zero electric charge, moving in external

electromagnetic field. Identifying the speed in the Lorentz force as the classical speed of

random motion of particle in space-time, we have

∂tv⃗ = e(E⃗ + v⃗ × B⃗)/m− (v⃗ · ∇)v⃗ + (u⃗ · ∇)u⃗+ ℜ∇2u⃗ (III.41)

In the electromagnetic field, the equation of motion of charged particle becomes coupled

non-linear partial differential equations as following

∂u⃗

∂t
= −ℜ∇(∇ · v⃗)−∇(u⃗ · v⃗) (III.42)

∂v⃗

∂t
= e(E⃗ + v⃗ × B⃗)/m− (v⃗ · ∇)v⃗

+(u⃗ · ∇)u⃗+ ℜ∇2u⃗ (III.43)

In order to solve the coupled non-linear partial differential equations, we have to linearise it

firstly. Let Ψ = eR+iI and notice that the canonical momentum of charged particle [16] is

p⃗ = mv⃗ + eA⃗/c, we suppose

∇R =
1

2ℜ
u⃗ (III.44)

∇I =
1

2ℜ
(v⃗ +

eA⃗

mc
) (III.45)
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In order to prove Eq.(III.39), we expand the first term of right side of Eq.(III.39) as

1

2m
(−i~∇− e

c
A⃗)2Ψ = −~2∇2

2m
Ψ+

e2A2

2mc2
Ψ (III.46)

+
i~e
2mc

(∇ · A⃗)Ψ +
i~e
mc

A⃗ · (∇Ψ)

Substituting Ψ = eR+iI , it leads to

− ~2

2m
[∇2R + i∇2I + (∇R + i∇I)2]Ψ +

e2A2

2mc2
Ψ+

i~e
2mc

(∇ · A⃗)Ψ +
i~e
mc

(A⃗ · (∇R + i∇I))Ψ (III.47)

With vector formulas

∇(A⃗ · B⃗) = A⃗× (∇× B⃗) + B⃗ × (∇× A⃗)

+(A⃗ · ∇)B⃗ + (B⃗ · ∇)A⃗ (III.48)

∇(∇ · A⃗) = ∇× (∇× A⃗) +∇2A⃗ (III.49)

and Eq.(III.44), we will obtain

∇× u⃗ = 0 (III.50)

∇× (v⃗ +
eA⃗

mc
) = 0 (III.51)

Straightforwardly, we have

i~(∂tR + i∂tI) = − ~2

2m
[∇2R + i∇2I

+(∇R + i∇I)2] + e2A2

2mc2
(III.52)

+
i~e
2mc

(∇ · A⃗) + i~e
mc

(A⃗ · (∇R + i∇I)) + eϕ

Now, let’s prove that the real and imaginary parts are separately equaled as

∂tI =
~
2m

(∇2R + (∇R)2 − (∇I)2)

− e2A⃗2

2mc2
+

e

mc
(A⃗ · (∇I))− eϕ

~
(III.53)

∂tR = − ~
2m

(∇2I + 2(∇R) · (∇I))

+
e

2mc
(∇ · A⃗) + e

mc
A⃗ · (∇R) (III.54)
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Taking the gradient from both sides and the definitions B⃗ = ∇×A⃗, E⃗ = −∂tA⃗−∇ϕ, we have

reproduced the Eq.(III.42). Therefore, we have proved that both sides of Eq.(III.42) are at

most different from a zero gradient function. It’s important to notice that the choices of

electromagnetic potentials are not completely determined. It allows a gauge transformation

[17]

A⃗′ = A⃗+∇Λ (III.55)

ϕ′ = ϕ− ∂tΛ (III.56)

For any function Λ(x⃗, t), the electromagnetic field is invariant. Therefore, the corresponding

wave function cannot change essentially, at most changing a phase factor. Given ψ′ = ψe
ieΛ
~c ,

Schrödinger equation of charged particle in electromagnetic field is invariant, i.e., U(1) gauge

symmetry. By choosing the function Λ(x⃗, t) properly, we are able to eliminate the redundant

zero gradient function. So we have proved Eq.(III.39) at the end.

D. Stationary Schrödinger equation from StIP

Let’s take a hydrogen atom as an example. Given A⃗ = 0 and ϕ = − e
4πϵ0r

for a hydrogen

atom, the stationary solution of Eq.(III.39) is

EΨ =
1

2m
(−i~∇)2Ψ− e2

4πϵ0r
Ψ (III.57)

of which ground state wave function is Ψ(r, θ, φ) = 1√
πa3
e−r/a and a = 5 × 10−11m is the

Bohr radius. Corresponding to the classical speed from Eq.(III.24), it is easy to show that

the classical speed of particles must be zero in stationary states. Within the framework of

StIP, we should interpret the stationary states from quantum mechanics as a space-time

random motion with zero classical speed. Once we have all the stationary states, we will get

the general solution by linear superposition. Therefore, we are going to derive stationary

Schrödinger equation from classical speed v⃗ = 0, which can provide a clear physical picture

of StIP. Moreover, when |⃗v| is large and close to speed of light c, the generalisation of this

framework is clear and will be explained in a further project.

The trajectory of random motion of particle can be understood as the superposition of

classical path and fluctuated path. During time interval △t, there are two contributions to

the trajectory as

δx⃗ = u⃗(x⃗, t)△t+△x⃗ (III.58)
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of which distribution satisfies φ(△x⃗) = φ(−△x⃗) and
r
φ(△x⃗)d(△x⃗) = 1. The space-time

coefficient reads

ℜ =
1

2△t

w
(△x⃗)2φ(△x⃗)d(△x⃗) (III.59)

The probabilistic density ρ(x, t) evolves as

ρ(x⃗, t+△t) =
w
ρ(x− δx⃗, t)φ(△x⃗))d(△x⃗) (III.60)

Expanding Taylor series of both sides, we have

∂tρ = −∇ · (ρu⃗) + ℜ∇2ρ (III.61)

which is consistent with Fokker-Planck equation. In any external potential V (x⃗), there are

two contributions to the changing of average speed. One is from random impacts of space-

time, another one is from acceleration provided by external potential. Therefore, the average

speed will evolve during time interval △t as

u⃗(x⃗, t+△t) =r
(u⃗(x⃗− δx⃗, t)−△t∇V (x⃗− δx⃗)/m)ρ(x− δx⃗, t)φ(△x⃗))d(△x⃗)r

ρ(x− δx⃗, t)φ(△x⃗))d(△x⃗)
(III.62)

the denominator of eq. III.62 is the normalisation factor of the probability distribution.

Expanding Taylor series of both sides, we obtain

du⃗

dt
= −∇V + ℜm(

∇2(ρu⃗)

ρ
− u⃗

∇2ρ

ρ
) (III.63)

With the condition of stationary state ∂tρ = 0, it goes to

u⃗ = ℜ∇ρ
ρ

(III.64)

∂tu⃗ = 0 (III.65)

It’s important to notice that
du⃗

dt
= ∂tu⃗+ (u⃗ · ∇)u⃗ (III.66)

Therefore, given the condition of stationary state, we are able to get

−2mℜ2∇2√ρ
√
ρ

+ V (x) = Const. (III.67)

We can prove this constant is exactly the average energy of particle

E =
w
ρ(
1

2
mu2 + V )d3x (III.68)
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Now, we have derived

−2mℜ2∇2√ρ
√
ρ

+ V (x) = E (III.69)

ψ =
√
ρe−iEt/~ (III.70)

Let ℜ = ~
2m

once again, we arrive at the stationary Schrödinger equation

−~2∇2

2m
ψ + V ψ = i~∂tψ (III.71)

IV. MINIMAL MASS FROM STIP

A. Existence of minimal mass

According to analysis in section 2, we know each collision of QST and the particle will

change the action of the particle exactly by one ~. Let us investigate the motion of the

particle in the rest frame before collision. If there are no lower bound of a mass of particle,

then in the period of a collision ∆t, the particle accquired an energy ∆E = ~
∆t
. It will only

can be transformed as the kinetic energy, hence we have:

~
∆t

=
1

2
mv2,

taking m goes to zero will end up with a infinity velocity. This obviously spoils the vacuum

speed of light principle. By introducing the Lorentz transformation as in special relativity,

the motion of the particle is controlled as(
~
∆t

+m0c
2

)2

= m2
0c

4 +

(
m0

γ(v)

)2

v2c2 (IV.1)

γ(v) =
√
1− v2/c2.

When the velocity close to c, the vacuum light speed, the equation (IV.1) never can be

satisfied. This means relativity can not cure the issue.

The way out, is to introduce the space-time sensible minimal mass m̄ST . If and only if the

mass m > m̄ST , the object under space-time collision can be seen as a particle in common

sense, otherwise the collision will never happen and the object is “invisible” by QSTs.
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B. Evaluation of the minimal mass

1. First estimation

If we have a mass m < m̄ST particle in space-time, by definition it will not be detected

by the QST all the way, all the time. Hence it will go along a straight line, with a constant

speed. According to the StIP, each collision results an changing of action of the particle an

~. Let’s assume the collision time is δt and during it the particle experiences a displacement

δx, a changing of energy δE, and a changing of momentum δP , so we obtain:

~ = δEδt = δPδx. (IV.2)

There is cosmological microwave backgroud(CMB) radiation in the universe everywhere,

which makes our empty space-time have temperature 2.73K. Let’s assume the energy density

in empty space-time is ρ. To result a random motion without friction for a particle under

StIP, the space-time sensible mass has the lower bound m̄ST , which satisfies:

m̄ST c
2 = ρ

4π(δx)3

3
. (IV.3)

Combining eq.(IV.2) and eq.(IV.3), we can obtain:

m̄ST =

(
4πρ~3

3c5

)1/4

. (IV.4)

Nowadays the experiment value of the energy density of CMB is ρ = 4.005 × 10−14J/m3,

substitute into (IV.4), we obtain m̄ST ≃ 2.117× 10−39kg.

2. Second estimation

The space-time sensible minmial mass, can have an intuitive understanding, that a rest

particle with mass m̄ST will have its De Broglie frequency ω̄ and satisfy:

m̄ST c
2 = ~ω̄. (IV.5)

When the frequency ω̄ of the particle is smaller than the characteristic frequency of CMB,

its signal will be erased by the noise of the CMB. The characteristic frequency of CMB ω is

kT = ~ω (IV.6)



23

from which we can estimate the minimal mass that can be detected by QSTs will be

m̄ST =
kT

c2
≃ 4× 10−40kg. (IV.7)

The conclusion now we have for the moment is: if the mass of a particle m < m̄ST , there

will be no interaction between QSTs and the particle, so no randam motion for the particle

will be emergent, the particle will move in speed c along a straight line.

V. FROM STIP TO UNCERTAINTY PRINCIPLE

We believed that the root of Heisenberg’s uncertainty principle is the random impacts of

space-time, which origins from that dx⃗/dt is not well defined according to the StIP. One has

to notice immediately that the momentum of particle can not be defined as p⃗ = mdx⃗/dt.

It’s reasonable to define momentum as

p⃗ = mDx⃗ = mv⃗ +mu⃗ (V.1)

where

u⃗ = ℜ∇ρ
ρ

(V.2)

For any random variable O, its average value is < O >=
r
Oρ(x)dx. Multiplying mρ into

both sides and integrating x, we can obtain the covariance between x and ux as

σ(x, ux) =< (x− < x >)(ux− < ux >) >= −ℜ (V.3)

where covariance is a measure of how much two random variables change together. The

sign of the covariance therefore shows the tendency in the linear relationship between the

variables. For any two random variables A and B, according to Cauchy-Schwarz inequality

|σ(A,B)| ≤ σ(A)σ(B), we have

σ(x)σ(ux) ≥ ℜ = ~/2m (V.4)

where the corresponding standard errors are

σ(x) =
√
< x2 > − < x >2 (V.5)

σ(ux) =
√
< u2x > − < ux >2 (V.6)
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We have proved the uncertainty relations between coordinate and fluctuated speed of parti-

cles in random motion. Furthermore, the fluctuations of momentum come from

σ2(p) = m2(σ2(v) + σ2(u)) (V.7)

Substituting σ(p) ≥ mσ(u), we arrive

σ(x)σ(px) ≥ ~/2 (V.8)

From this proof, we can interpret Heisenberg’s uncertainty principle as the uncertainty rela-

tions between coordinate and fluctuated speed of particles in random motion. Historically,

in 1927, Kennard had given the first mathematical proof of uncertainty principle [18]. In

the following year, Weyl proved uncertainty principle independently [19]. We should remark

that the uncertainty principle has been confused with a somewhat similar effect in physics,

called the observer effect, which notes that measurements of certain systems cannot be

made without affecting the systems. From recent experiments in 2012 [20, 21], the original

interpretation of Heisenberg such an observer effect at the quantum level as a physical "ex-

planation" of quantum uncertainty is not satisfied. It has been since become clear, however,

that the uncertainty principle must be inherent in the properties of all particles in space-

time. In this paper, we show that the uncertainty principle is deeply rooted from random

impacts of space-time. Within the framework of non-relativistic quantum mechanics, the

mass of particle is the only intrinsic property that is sensible in space-time.

VI. FROM STIP TO PATH INTEGRAL

Historically, the basic idea of the path integral formulation can be traced back to Norbert

Wiener, who introduced the Wiener integral for solving problems in stochastic process [3].

This idea was extended to the use of the Lagrangian in quantum mechanics by P. A. M. Dirac

in his 1933 paper [22].The complete method was developed in 1948 by Richard Feynman

[23]. The path integral formulation of quantum mechanics is a description of quantum theory

which generalises the action principle of classical mechanics. It replaces the classical notion

of a single, unique trajectory for a system with a sum, or functional integral, over an infinity

of possible trajectories to compute a quantum amplitude. Although we only investigated

non-relativistic quantum mechanics in this paper, it is worthy to remark that the path
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integral formulation was very important for the development of quantum field theory[24].

The advantages of the path integral formulation mostly come from putting space and time

on the equal footing, which is convenient to generalise in the relativistic theory. However,

the regulator of path integral have caused infamous troubles for the divergence in quantum

field theory, which leads to the procedure of renormalization. Within the framework of StIP,

all the properties of random motion particle are finite so that we are able to construct a

theory without divergence from beginning. In other words, all the quantum behaviours of

particles are emergent from the statistical description of stochastic process.

A. Path integral of free particle and space-time interaction coefficient

There are two kinetic variables with random motion particle in space-time, which are

classical speed v⃗ and fluctuated speed u⃗. The corresponding kinetic equations are

∂u⃗

∂t
= −ℜ∇(∇ · v⃗)−∇(u⃗ · v⃗) (VI.1)

∂v⃗

∂t
= −(v⃗ · ∇)v⃗ + (u⃗ · ∇)u⃗+ ℜ∇2u⃗ (VI.2)

Setting Ψ = eR+iI , we are able to linearise as

∇R =
1

2ℜ
u⃗ (VI.3)

∇I =
1

2ℜ
v⃗ (VI.4)

which leads to
∂Ψ

∂t
= iℜ∇2Ψ (VI.5)

During an infinite small time interval ϵ, the solution can be written in terms of integrals as

Ψ(x, t+ ϵ) =
w
G(x, y, ϵ)Ψ(y, t)dy (VI.6)

which represents the superposition of all the possible paths from y to x. The critical ob-

servation of Feynman is the weight factor G(x, y, ϵ) will be proportional to eiS(x,y,ϵ)/~, where

S(x, y, ϵ) is the classical action of particle as

S(x, y, ϵ) =
w
L(x, y, ϵ)dt =

w
(K − U)dt = (K̄ − Ū)ϵ (VI.7)

K̄ and Ū are average kinetic energy and potential energy separately. In order to show the

equivalence between path integral formulation and the space-time interacting picture, we



A Path integral of free particle and space-time interaction coefficient 26

should derive our basic kinetic equations from the postulation of path integral G(x, y, ϵ) =

AeiS(x,y,ϵ)/~. For a free particle in space-time, one has Ū = 0,L̄ = m
2
(x−y

ϵ
)2 and S = m(x−y)2

2ϵ
,

which leads to

Ψ(x, t+ ϵ) = A
w
e

im(x−y)2

2~ϵ Ψ(y, t)dy (VI.8)

Setting y − x = ξ and α = − im
2~ϵ , it can be written in terms of

Ψ(x, t+ ϵ) = A
w
e−αξ2Ψ(x+ ξ, t)dξ (VI.9)

= A
w
e−αξ2(Ψ(x, t) + ξ

∂Ψ

∂x
+

1

2
ξ2
∂2Ψ

∂x2
+O(ξ4))dξ

With the properties of Gaussian integral

w
e−αξ2dξ =

√
π

α
(VI.10)w

e−αξ2ξdξ = 0 (VI.11)
w
e−αξ2ξ2dξ =

1

2α

√
π

α
(VI.12)

we can obtain

Ψ(x, t+ ϵ) = A(

√
π

α
Ψ(x, t) +

1

4α

√
π

α

∂2Ψ

∂x2
+O(α− 5

2 )) (VI.13)

Setting A =
√

α
π
, we have

Ψ(x, t+ ϵ)−Ψ(x, t) = ϵ∂tΨ(x, t) =
1

4α

∂2Ψ

∂x2
(VI.14)

From this integral, We observed that the most important contribution comes from y − x =

ξ ∝
√
ϵ, where the speed of particle is y−x

ϵ
∝
√

~
mϵ

, we see here when ϵ → 0, the velocity

divergent in order
√
1/ϵ. The paths involved are, therefore continuous but possess no

derivative, which are of a type familiar from study of stochastic process. With the isotropy

of space, we have

∂tΨ(x⃗, t) =
1

4αϵ
∇2Ψ(x⃗, t) (VI.15)

Corresponding to the Eq. (VI.5), if one requires the equivalence between path integral

formulation and StIP, there must be

iℜ =
1

4αϵ
(VI.16)

ℜ =
1

4iαϵ
=

1

4i(− im
2~ϵ)ϵ

=
~
2m

(VI.17)
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Notice that ℜ is only an arbitrary parameter in the Eq.(III.21). The consistency between

path integral and space-time interaction requires ℜ = ~
2m

. An arbitrary finite time interval

∆t, can be cut into infinitely many pieces of infnitesimal time interval ϵ. And in each ϵ,

the collisions leads to many different paths, one can pick one path and consectively another

along the time direction, this will end up a path in ∆t, sum over all possible paths in ∆t

gives an integration over path space, which is the celebrated historical summation or path

integral. The method here can be straightforwardly generalised to the particle in the external

potential as in following section.

B. Path integral of particle in an external potential and space-time interaction

coefficient

In an external potential U , one has Ū = U(x+y
2
) and L̄ = m

2
(x−y

ϵ
)2, which leads to the

action

S =
m(x− y)2

2ϵ
− U(

x+ y

2
)ϵ (VI.18)

According to the path integral formulation, it must satisfy

Ψ(x, t+ϵ) = A
w
e

im(x−y)2

2~ϵ − iU(
x+y
2 )ϵ

~ Ψ(y, t)dy = A
w
e

im(x−y)2

2~ϵ (1−
iU(x+y

2
)ϵ

~
)Ψ(y, t)dy (VI.19)

To the lowest order of ϵ, it shows

U(
x+ y

2
)ϵ = U(x+

ξ

2
)ϵ = U(x)ϵ (VI.20)

Ψ(x, t+ ϵ) = A
w
e−αξ2(1− iU(x)ϵ

~
)Ψ(x+ ξ, t)dξ (VI.21)

From the properties of Gaussian integral in the previous section, we obtain

Ψ(x, t+ ϵ) = A(1− iU(x)ϵ

~
)

√
π

α
Ψ(x, t) + A

1

4α

√
π

α

∂2Ψ

∂x2
(VI.22)

Setting A =
√

α
π
, we have

∂tΨ(x⃗, t) =
1

4αϵ
∇2Ψ(x⃗, t) +

1

i~
UΨ(x⃗, t) (VI.23)

To be consistent with the case of free particle, let’s take ℜ = ~
2m

which leads to

∂tΨ(x⃗, t) = iℜ∇2Ψ(x⃗, t) +
1

i~
UΨ(x⃗, t) (VI.24)

Therefore we have derived the equation of motion from StIP.
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VII. SUMMARIES AND CONCLUSIONS

The Copenhagen interpretation of quantum theory implies that we must renounce the

possibility of describing an individual system in terms of an abstract concept of wave func-

tion. However, in this paper, we have proposed the StIP as an alternative interpretation

which does not involve the abstract concept of wave function, but instead leads us to the

materialistic point of view of particle and space-time. Within the broader framework of

StIP, we are able to conceive of each individual system as being in a precisely definable

state, whose changes with time are determined by definite laws. As long as the present form

of Schrödinger equation is retained in the non-relativistic case, the physical results obtained

with the StIP are precisely the same as those obtained with usual quantum mechanics.

Theerfore, it is thus entirely possible that we can have a precise and objective description

at the quantum level.

Within the framework of StIP, we have derived the space-time coefficient and propose

the concept of space-time sensible mass in the non-relativistic case. More importantly, we

have proved the existence of the minimum of space-time sensible mass, below which the

particle cannot be sensible in space-time so that it will travel at the speed of light. When

the inertial mass of particle is equal to the space-time sensible mass, we have proved that

the equation of motion will be equivalent to Schrödinger equation. With the postulation of

StIP, quantum behaviour will emerge from a statistical description of space-time random

impacts on the experimental scale, including Schrödinger equation, Born rule, Heisenberg’s

uncertainty principle and Feynman’s path integral formulation. It is shown that we can

construct a physical picture distinct from Copenhagen interpretation, and reinvestigate the

nature of space-time and reveal the origin of quantum behaviours from the realistic point of

view.
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